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1 Introduction

Whereas it has a long tradition to model preferences with subjective expected utility

(SEU), researchers nowadays consider more sophisticated preference representations.

If a decision maker (DM) has vague information about the model that determines

the distribution of outcomes, uncertainty does not only appear as risk, i.e. fluctua-

tions with a known probability distribution, but also as ambiguity about the model

itself. Ambiguity may cause a loss of utility to a DM. The resulting bias in port-

folio allocations, mirroring the aspiration for robust decision making, might have a

perceptible impact on asset prices.

This paper investigates if ambiguity aversion is present in investors’ decision

patterns by looking at the cross-section of stock returns and macroeconomic vari-

ables. We estimate a set of preference parameters assuming that investors act in

line with the smooth ambiguity (SA) model of preference as developed by Klibanoff

et al. (2005, 2009). We compare the pricing performance of the SA model with the

recursive preference model of Epstein and Zin (1989), EZ in the following, to eval-

uate the impact of ambiguity on asset prices. To highlight the major difficulties in

estimating the preference parameters and to justify our estimation technique, we

use a long-run risks (LRR) asset pricing model, similar to Bansal and Yaron (2004).

Intuitively, a DM with SA preferences considers a whole set of different eco-

nomic models. For each, she calculates a certainty equivalent with respect to ex-

pected utility. Her decisions are finally based on the expected utility of the set of

certainty equivalents with respect to a second utility function. This function dis-

plays the DM’s ambiguity attitude and is characterized by the ambiguity parameter

η. One goal of this paper is to estimate this parameter and thus gauge the ambigu-

ity attitude of investors. An alternative approach to introduce ambiguity aversion

is the multiple priors model of Gilboa and Schmeidler (1989). They assume that

a DM does not consider all certainty equivalents belonging to different candidate
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models, but only the “worst case”. Hansen and Sargent (2001) suggest the relation

of this approach to the robustness theory of Andersen et al. (2000) and Hansen and

Sargent (2008). Ju and Miao (2012) point out that the SA framework contains these

and further preference specifications as special and limiting cases.

Halevy (2007) investigates a variety of decision models using extensions of the

Ellsberg (1961) experiment. Bossaerts et al. (2010) and Ahn et al. (2011) analyze

the impact of ambiguity in portfolio choice experiments. In contrast to experimental

studies, our results are based on historical stock market data. Epstein and Schneider

(2010) review the literature on ambiguity and asset markets. They conclude that

ambiguity has important implications for the pricing of financial assets. General

equilibrium asset pricing applications of the SA approach include Collard et al.

(2011), Ju and Miao (2012), and Miao et al. (2012). In these papers, the risk aversion

parameter γ is set to a low value, while the ambiguity parameter η is calibrated

to match important asset pricing moments. The assumed value varies significantly

between the asset pricing applications in the literature. However, as for γ, there also

has to be a reasonable range for η. The findings of Halevy (2007) are interpreted by

Chen et al. (2011), who infer an ambiguity parameter between 50 and 90. Our point

estimates of η are between 25 and 40, while γ is clearly lower and within the range

considered plausible by Mehra and Prescott (1985). The substantial difference to

the risk aversion parameter indicates that market participants are ambiguity averse.

The consumption-based asset pricing model of Lucas (1978) and Breeden

(1979) has severe problems in explaining the large equity premium and the cross-

sectional variation in expected returns.1 We investigate whether accounting for am-

biguity helps explaining these phenomena and compare the pricing performances of

the EZ and SA models. We find that it is difficult to discriminate between these

two decision models solely based on pricing errors. The SA model achieves a slightly

1See Lettau and Ludvigson (2001b), Parker and Julliard (2005), and the references therein.
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better fit to the data with lower relative risk aversion.

To estimate preference parameters, we use the generalized method of moments

(GMM) of Hansen (1982). Hansen and Singleton (1982) employ GMM to estimate

the consumption-based capital asset pricing model, while Epstein and Zin (1991)

estimate the EZ model. GMM relies on Euler equations to test the fit of candidate

pricing kernels. Compared with EZ preferences, the pricing kernel and hence the

Euler equation of the SA model contains an additional term, which characterizes

the impact of an investor’s ambiguity attitude on asset prices. An ambiguity averse

agent puts more weight on economic models that yield a low expected continuation

value. Estimation of this expected value, conditional on the economic model, imposes

technical difficulties. Motivated by a LRR model, we show how to overcome these.

Another difficulty in estimating consumption-based asset pricing models with

recursive preferences is that it requires the return on the wealth portfolio, which is

not observable. Several approximations have been proposed in the literature. Epstein

and Zin (1991) use the return on a broad stock market index. However, Chen et al.

(2012) and Lustig et al. (2012) study the properties of the return on wealth and

find that it is less volatile and only weakly correlated with the return on the stock

market. Among others, Campbell (1996) and Jagannathan and Wang (1996) account

for the large fraction of human wealth in total wealth. As in Zhang (2006), we use

a proxy for the return on wealth based on the variable cay of Lettau and Ludvigson

(2001a), which includes human wealth and total asset holdings.

The remainder of this paper is organized as follows. Section 2 reviews SA

preferences and the pricing kernel. In Section 3, we discuss the estimation technique.

In Section 4, we perform a simulation study to investigate the finite sample behavior

of our estimation approach. The preference models are estimated based on post-war

consumption and stock market data in Section 5. Section 6 concludes.
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2 Smooth Ambiguity Preferences

In this section, we introduce SA preferences. We start with a static setting as de-

veloped by Klibanoff et al. (2005) and generalize to a dynamic setting as done by

Klibanoff et al. (2009) and Ju and Miao (2012). The preference representation is

a generalization of recursive preferences as developed by Kreps and Porteus (1978)

and Epstein and Zin (1989). Since our goal is to provide a strong intuition for the

nature of SA preferences, we set technicalities aside and refer the interested reader

to the papers named above. An axiomatic foundation of SA preferences can be found

in Hayashi and Miao (2011).

2.1 The static setting

Consider a state space S that contains all states of the nature. The preference

function is supposed to evaluate all acts, i.e. random variables, that map states in S

to the set C of (financial) consequences, which can be thought of as a subset of the

real numbers. For instance, the payoff resulting from an investment decision is an

act, since the realized payoff depends on the realized state of the nature. Aggregate

consumption in the economy, i.e. the number of purchased goods, is also an act.

The amount of utility a certain consequence provides to the DM is quantified by

her utility function u. The SEU approach proposed by Savage (1954) assumes that

the DM evaluates acts f by the help of the functional
∫
S
u(f)dπ ≡ Eπ[u(f)]. To

take expectations, it is necessary to quantify how probable it is that different states

of nature occur, i.e. pin down one probability measure π on the state space S.

The thought experiments of Ellsberg (1961) give reason to believe that individuals

do not base their decisions on expected utility. They may have vague information

about the probability measure π and rather deem a set Π of measures possible.

Ambiguity aversion is characterized by a rejection of mean-preserving spreads in
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expected utilities corresponding to different measures in Π.

In case of a risk averse DM, the concavity of u makes the SEU-functional

Eπ[u(f)] weight mean-preserving spreads in consequences of f down, due to Jensen’s

inequality. To model ambiguity aversion, Klibanoff et al. (2005) take advantage of

the same mechanism and define the functional

F (f) =

∫
Π

φ

(∫
S

u(f)dπ

)
dµ(π) ≡ Eµ[φ(Eπ[u(f)])].

µ denotes a probability measure on the set Π of all probability measures on S and

the function φ characterizes the DM’s attitude towards ambiguity. Defining a utility

function v : C → R via v = φ◦u, we may interpret F (f) as Eµ[v(CE(π, f)], where we

define the conditional certainty equivalent CE corresponding to the measure π ∈ Π

as CE(π, f) = u−1(Eπ[u(f)]). Hence, a DM who acts in line with SA preferences

maximizes expected utility of the conditional certainty equivalents that belong to

different probability measures. The ambiguity attitude of the DM is characterized

by the curvature of the function φ. A convex φ displays ambiguity loving decision

behavior, while a concave φ leads to an ambiguity averse decision pattern. This is

equivalent to v being a concave transformation of u. If φ is linear, SA preferences

reduce to subjective expected utility.

As pointed out by Ju and Miao (2012), the interpretation of the set Π links

the SA approach to the robust control literature and provides valuable intuition.

Each probability measure π ∈ Π corresponds to an economic model. The measure

µ determines how probable the DM believes the different models are. The less con-

centrated the mass under µ, the higher is the model uncertainty, a term that we use

interchangeably with the term ambiguity.
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2.2 The dynamic setting

Observations of realized outcomes today might cause the DM to change her per-

ception of the likelihood of future economic models. While the set Π of all possible

measures does not vary, the distribution µ on Π hence changes over time, so we add

a time index to µ.2 We also add a time index to the measure π to point out that

πt+1 corresponds to the economic model at hand at time t+ 1.

Let C = (Ct)t∈N be the DM’s consumption plan, i.e. a series of acts, where

each act is a time t-measurable random variable. As in Epstein and Zin (1989), we

assume that the DM’s time t value function is given recursively by

Vt(C) =W(Ct,Rt(Vt+1(C))),

whereW denotes the time aggregator and Rt the uncertainty aggregator. The latter

can be interpreted as an unconditional certainty equivalent and is specified as

Rt(x) = v−1
(
Eµt
[
φ
(
Eπt+1 [u(x)]

)])
.

More precisely, we assume that W is a constant elasticity of substitution time ag-

gregator and that u and v are of the power utility type

W(x, y) =
[(

1− e−δ
)
x1−ρ + e−δy1−ρ] 1

1−ρ ,

u(x) =
x1−γ

1− γ
, γ > 0, 6= 1,

v(x) =
x1−η

1− η
, η > 0, 6= 1.

2Other authors, e.g. Ju and Miao (2012), characterize Π as the set of those measures the DM
thinks possible. From their point of view, the size of Π determines the amount of ambiguity in
an economy and therefore has to be time-varying. We obtain this set by excluding all µt-zero sets
from our Π, which is the set of all probability measures on S and therefore constant over time.
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The parameter vector Θ = (ρ, δ, γ, η) describes the DM’s preferences and is therefore

the core of this paper. ρ denotes the reciprocal of the DM’s elasticity of intertemporal

substitution (EIS) and δ the DM’s subjective time discount rate. The remaining

parameters describe the DM’s attitudes towards risk (γ) and ambiguity (η). She is

ambiguity averse if η > γ. Summing up, at time t the DM evaluates consumption

plans C according to

Vt(C) =

[(
1− e−δ

)
C1−ρ
t + e−δ

{
Eµt
[(
Eπt+1

[
V 1−γ
t+1 (C)

]) 1−η
1−γ

]} 1−ρ
1−η
] 1

1−ρ

. (1)

At time t, the DM observes the current economic model πt. However, the future eco-

nomic model πt+1 is ambiguous, meaning that Eπt+1 [V
1−γ
t+1 (C)] is a random variable

on Π. Equation (1) nests the value functions of EZ preferences (η = γ) and constant

relative risk aversion (CRRA) utility (ρ = η = γ).

2.3 The pricing kernel

The pricing kernel ξ links preferences to asset returns via the relation

Et
[
ξt,t+1R

i
t,t+1 − 1

]
= 0,

where Et is an abbreviation for EµtEπt+1 and Ri
t,t+1 denotes the gross return on

money invested at time t for one period in an arbitrary asset i. Alternatively, the

Euler equation for asset i can be expressed in terms of excess returns

Et
[
ξt,t+1

(
Ri
t,t+1 −R

f
t,t+1

)]
= 0,

where Rf denotes the return on the risk-free asset. In complete markets, (ξt,t+1)t∈N

is a unique series of random variables. It can be expressed in terms of continuation

values with the help of the value function described in Section 2.2. Following Duffie
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and Skiadas (1994) and Hansen et al. (2007), it satisfies

ξt,t+1 = e−δ
(
Ct+1

Ct

)−ρ(
Vt+1(C)

Rt(Vt+1(C))

)ρ−γ ((Eπt+1 [V
1−γ
t+1 (C)])

1
1−γ

Rt(Vt+1(C))

)γ−η

, (2)

as reported in Hayashi and Miao (2011), Proposition 8. The first three terms are

the EZ pricing kernel, which collapses to the CRRA pricing kernel for γ = ρ. The

last term displays the impact of the DM’s ambiguity attitude on asset prices. Its

numerator is the conditional certainty equivalent CE(Vt+1(C)) of the continuation

value as defined in Section 2.1. Hence, the DM considers the conditional certainty

equivalent corresponding to a certain economic model πt+1 relative to the uncon-

ditional certainty equivalent. Depending on her ambiguity attitude, she puts more

(if ambiguity averse, i.e. γ < η) or less (if ambiguity loving, i.e. γ > η) weight on

economic models that yield a low expected utility.

The continuation value is unobservable and in applications it is usually more

convenient to work with the pricing kernel in terms of the return on wealth. We

define θ1 := 1−γ
1−ρ and θ2 := 1−η

1−γ . The pricing kernel then is

ξt,t+1 = e−δθ1
(
Ct+1

Ct

)−ρθ1
(Rw

t,t+1)θ1−1

(
Eπt+1

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
(Rw

t,t+1)θ1

])θ2−1

, (3)

where Rw denotes the return on the wealth portfolio, i.e. the claim on aggregate

consumption. The parameter θ2 expresses the concavity of φ and therefore the am-

biguity attitude of the DM. Hence, the bias through the additional last term in the

pricing kernel (compared to the EZ pricing kernel) causes the impact of the DM’s

ambiguity attitude on asset prices.
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3 Estimation Technique

In this section, we introduce the econometric methodology to infer attitudes towards

ambiguity from financial market data. We use GMM to estimate the preference pa-

rameters. From Equation (3) it is clear that two central components of the pricing

kernel are the return on the wealth portfolio, which cannot be observed at the mar-

ket, and the expected value, conditional on the economic model, that distinguishes

SA from EZ preferences. We discuss a return proxy in Section 3.2 and provide an

estimation technique for the conditional expectation in Section 3.3.

3.1 GMM estimation

Euler equations link asset returns to consumption growth and the return on the

wealth portfolio. The imposed population moment restrictions can be employed to

test the fit of candidate pricing kernels.

The returns used in the estimation are those of a number of test assets. We use

returns on the 3-month Treasury bill, a broad stock market index, and 30 additional

equity portfolios. To weight the moment conditions, we employ the identity matrix.

The test assets are selected based on economically interesting characteristics and

this choice of the weighting matrix guarantees that the candidate pricing kernels

are evaluated on how they price these assets, rather than linear combinations of

them. The moment condition for the 3-month Treasury bill forces the mean of the

pricing kernel to equal the inverse of the gross return on the risk-free asset. The

other moment conditions require the model to fit the equity premium and the cross-

section of average returns. Minimizing the sum of squared pricing errors makes the

results comparable to asset pricing tests using OLS cross-sectional regressions. In

addition, the identity matrix is suitable for model comparison, as it is invariant

across all models tested. According to Altonji and Segal (1996), first stage GMM
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estimates are more robust in finite samples. Cochrane (2005, Ch. 11) explains several

additional advantages of using a prespecified weighting matrix.

There are more moment conditions than unknown parameters, i.e. the system

is overidentified. The null hypothesis that all moment conditions are zero can be

tested using Hansen’s J-test. If we acknowledge that all models are misspecified,

hypotheses tests of the null of correct model specification against the alternative

of incorrect specification are of limited value. Following the idea that we are look-

ing for the least misspecified model, we compare root mean squared errors (RMSE)

and Hansen and Jagannathan (1997) distances (HJD) of different preference spec-

ifications and parameter vectors. We test if these performance measures are zero

using the methodology proposed by Jagannathan and Wang (1996) and Parker and

Julliard (2005). To evaluate parameter restrictions for time-separability (γ = ρ)

and ambiguity neutrality (γ = η), we employ Wald tests. Details on the estimation

procedure and on testing hypotheses are provided in Appendix A.

Ferson and Foerster (1994), Hansen et al. (1996), Smith (1999), and Ahn and

Gadarowski (2004) point out that commonly employed specification tests reject too

often in finite samples. Thus, relying solely on these tests to evaluate the goodness of

fit of candidate asset pricing models is problematic. Lewellen et al. (2010) show that

focusing to closely on high cross-sectional R2s and small pricing errors can be mis-

leading. We follow their advice to expand the set of test portfolios beyond size and

book-to-market sorted portfolios and evaluate if the decision models produce plau-

sible preference parameter estimates. Allowing all parameters to be estimated freely

focuses solely on model fit. Restricting certain preference parameters to econom-

ically reasonable values, balances the objective between minimizing pricing errors

and the plausibility of the parameter estimates.

For a large part of the analysis, we follow Bansal et al. (2007) and fix the EIS

at economically reasonable values. There is considerable debate about the correct
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value of the EIS. Hall (1988), Campbell and Mankiw (1989), and Yogo (2004) find an

EIS close to zero, while Vissing-Jorgensen and Attanasio (2003), Bansal and Yaron

(2004), Guvenen (2006), and Chen et al. (2012) argue for a higher value. Hansen

et al. (2008) and Malloy et al. (2009) set the EIS to one. This choice simplifies

the analysis considerably. However, it implies that the wealth-consumption ratio is

constant. Lettau and Ludvigson (2001a) and Lustig et al. (2012) show that this

contradicts empirical evidence. In the LRR model of Bansal and Yaron (2004), a

drop in volatility and a rise in expected consumption growth increase the wealth-

consumption ratio if the EIS is greater than one. Bansal et al. (2005) support the

negative relation between volatility and asset prices and Lustig et al. (2012) show

that the LRR model produces a wealth-consumption ratio that fits the data.

As suggested by Constantinides and Ghosh (2011), we report results for sev-

eral values of the EIS. Prefixing the EIS is beneficial for several reasons. First, it

is very difficult to estimate the EIS reliably. As our main object of interest is the

DM’s attitude towards ambiguity and not the magnitude of the EIS, setting it to

economically reasonable values simplifies the estimation of the ambiguity parame-

ter. Second, it facilitates the comparison of parameter estimates of the EZ and SA

models, i.e. the effect that differences in the estimated EIS cause large changes in

the estimated values of risk and ambiguity aversion are avoided. Furthermore, fixing

the EIS at reasonable levels may provide valuable guidance on the magnitude of risk

and ambiguity aversion for researchers in calibrating the SA model.

3.2 Return on wealth

Testing candidate pricing kernels corresponding to EZ or SA preferences presumes

that either the continuation value of the future consumption plan in Equation (2)

or the return on the wealth portfolio in Equation (3) is observable. The wealth

portfolio is an asset that pays aggregate consumption as dividends. Although ag-
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gregate consumption is observable, neither the return on aggregate wealth nor the

continuation value can be observed at the market. This causes severe problems for

estimating consumption-based asset pricing models, as pointed out by Ludvigson

(2012).3 Approximating the continuation value is discussed in Hansen et al. (2008),

Ju and Miao (2012), and Chen et al. (2012). The latter estimate the functional form

of the continuation value ratio, defined as the continuation value divided by time t

consumption, using a profile sieve minimum distance procedure.

Approximating the return on wealth with a suitable function of observable

variables is another alternative. Epstein and Zin (1991) use the return on a broad

stock market index as a proxy for the return on aggregate wealth. Among others,

Stock and Wright (2000) and Yogo (2006) follow this approach. However, a stock

market index is only a good proxy for the return on aggregate wealth if human capital

and other non-tradable assets are minor components of aggregate wealth. Critique

of this approach goes back to Roll (1977). Lustig et al. (2012) show that human

capital makes up the largest fraction of aggregate wealth. Campbell (1996) and

Jagannathan and Wang (1996) include human capital. However, other components

of wealth, such as total household asset holdings, should also be accounted for. We

discuss an approach that incorporates all kinds of wealth by using the cay variable.

Lettau and Ludvigson (2001a) define cay as

cayt := ct − ωat − (1− ω)yt,

where c denotes log consumption, a log asset holdings, and y log aggregate labor

income.4 The variable ω is the relative share of asset holdings in total wealth, which

is assumed to be constant over time. Lettau and Ludvigson (2001a) assume that

3The pricing kernel can be expressed in terms of observables by restricting the EIS to one
or by imposing tight restrictions on either the consumption dynamics or the joint distribution of
consumption and asset returns.

4See Appendix C for the precise specification of the variables used.
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asset holdings and human capital sum up to total wealth and that human wealth is

approximately proportional to labor income. The variable cay is a proxy for inno-

vations in the time t log consumption-wealth ratio. As in Zhang (2006), we use cay

to construct the return on the wealth portfolio.5

Let Wt denote aggregate wealth at time t. Using the budget constraint Wt+1 =

(Wt − Ct)Rw
t,t+1, the return on wealth is given by

Rw
t,t+1 =

Ct+1

Ct
· Ct/Wt

Ct+1/Wt+1

· 1

1− Ct
Wt

.

Assume that Ct
Wt

= κ · exp(cayt), i.e. the consumption-wealth ratio fluctuates around

its steady state value κ. A proxy for the return on wealth is

Rcay
t,t+1 :=

Ct+1

Ct

exp(cayt − cayt+1)

1− κ · exp(cayt)
.

The constant κ is of minor relevance, since it is the timing of innovations to the

consumption-wealth ratio rather than its level that is important for the estimation.

Table 1 contains summary statistics of two proxies for the return on wealth.

RCRSP denotes the gross return on the CRSP value weighted index. The mean of

rcay = logRcay is 1.48% per quarter, which is close to the mean of rCRSP = logRCRSP

(1.52%). However, its standard deviation is only 0.81% per quarter and therefore

less than one tenth of the standard deviation of the return on the CRSP index

(8.57%). rcay has similar statistical properties as the return on wealth in Chen et al.

(2012). They find that the return on aggregate wealth is less volatile compared with

the return on the CRSP stock market index and the correlation between the two is

rather low. In our sample, the correlation between rcay and rCRSP is about 0.5.

5Lettau and Ludvigson (2001a) propose that c, a, and y are cointegrated and estimate the
coefficients ω and 1− ω using OLS. Since the estimates do not perfectly sum up to 1, we proceed
as Zhang (2006) and divide the estimate of ω by the sum of both estimates.
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3.3 Estimation of the conditional expectation

Using Euler equations to estimate the SA model requires an empirical estimate of

the conditional expectation

Eπt+1

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
(Rw

t,t+1)θ1

]
,

which distinguishes SA preferences from EZ utility. To estimate the conditional

expected value, we employ local relative least squares estimation on the realizations

Yt+1 :=

(
e−δ
(
Ct+1

Ct

)−ρ
Rw
t,t+1

)θ1

, (4)

i.e. we minimize the relative error

T−1∑
t=0

{
Yt+1 −M(Xt+1)

Yt+1

}2

.

We assume that the conditional expectation of Yt+1 is a function M of a standardized

vector Xt+1 of time t+ 1 regressors. For the approach to be valid, the economic

model needs to be explicable by these regressors. More precisely, there has to be a

bijective relation between the set of economic models Π and the image of X, i.e. all

possible realizations of the regressor variables. We discuss adequate choices of the

regressors in Section 4.2.

The conditional expectation to be estimated is multiplied by other terms in

the Euler equations. This makes minimizing the relative error a sensible choice.

Furthermore, minimizing relative least squares instead of ordinary least squares is

motivated by commonly utilized affine asset pricing models. In these models, the

log of Equation (4) is affine in the innovations to log consumption growth and the

state variables. Following Park and Stefanski (1998), we exploit the approximation
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log(x) ≈ x− 1

T−1∑
t=0

{
Yt+1 −M(Xt+1)

Yt+1

}2

≈
T−1∑
t=0

{
log(Yt+1)− log(M(Xt+1))

}2

.

Defining m := log ◦M , we run the following regression

log(Yt+1) = m(Xt+1) + Σ(Xt+1) εt+1, t ∈ {0, . . . , T − 1},

where Σ is the conditional volatility and ε denotes an i.i.d. zero mean, unit variance

disturbance term. We allow for nonlinearities in m and approximate the conditional

expectation locally by a linear function.6 Fan (1992) and Ruppert and Wand (1994)

show that the local linear estimator has several advantages compared to other non-

parametric estimators. For each i ∈ {0, . . . , T − 1}, an estimate of the conditional

expectation at the data point Xi+1 is

m̂(Xi+1) = α̂i+1 + β̂i+1 ·Xi+1,

where ([α̂i+1, β̂i+1])i∈{0,...,T−1} is given by

[α̂i+1, β̂i+1] = argmin
[α,β]

T−1∑
t=0

{
log(Yt+1)− (α + β ·Xt+1)

}2

w(Xi+1, Xt+1).

The weighting function w assigns more weight to observations close to the current

data point and less weight to observations farther away. If l denotes the number of

explanatory variables, i.e. the length of the vector Xt+1 for t ∈ {0, . . . , T − 1}, the

weighting function is defined as

w(X1, X2) :=
l∏

j=1

K

(
X1,j −X2,j

hj

)
.

6Nagel and Singleton (2011) use a similar approach to estimate conditional moments.
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The weighting depends on the specification of the kernel function K, which assigns

local weights to the linear estimator. The vector of bandwidths h = (h1, . . . , hl)

controls the neighborhood of the current point. We use the Epanechnikov kernel

K(u) = 3
4
(1 − u2)1(|u|≤1) and employ an individual bandwidth for each regressor.

A large bandwidth hi results in a smooth estimate that might neglect important

features of the data contained in the i-th regressor, while for a small bandwidth the

estimate follows the data very closely. The optimal vector of bandwidths h is chosen

by minimizing the cross-validation criterion

CV (h) =
1

T

T−1∑
i=0

{
log(Yi+1)− (α̂−i+1 + β̂ −i+1Xi+1)

}2

,

where [α̂−i+1, β̂
−
i+1] denotes the estimate computed excluding the (i+1)-th data point.

The optimal bandwidths depend on the explanatory variables and the EIS.

4 Long-Run Risks Model

In this section, we estimate the EZ and SA models based on simulated consumption

and return data to investigate the performance of our estimation technique in finite

samples. As in Bansal and Yaron (2004), the laws of motion of consumption and

dividend growth are driven by two long-run risk factors.

4.1 Data generating process

In Bansal and Yaron (2004), the distribution of consumption and dividend growth,

hence the time t+ 1 economic model, depends on the realizations of two state vari-

ables that characterize the economic circumstances at time t + 1. We use a similar

endowment process and assume that the representative investor is ambiguous about

the state variables that drive consumption and dividend growth in the long-run.
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Short-run consumption and dividend uncertainty are treated as risk and evaluated

with the risk aversion coefficient γ. The long-run growth factor and the conditional

volatility of consumption growth are perceived as ambiguous. The parameter η de-

termines the investor’s attitude towards these sources of uncertainty.

The laws of motion of log consumption growth ∆ct+1 = logCt+1 − logCt, log

dividend growth ∆dt+1 = logDt+1 − logDt, and of the state variables are

∆ct+1 = µc + xt+1 + σt+1w
c
t+1,

∆dt+1 = µd + λxt+1 + σt+1φd,σ

(
ρcdw

c
t+1 +

√
1− ρ2

cdw
d
t+1

)
,

xt+1 = ϕxxt + φxσt+1w
x
t+1,

σ2
t+1 = σ2 + ϕσ(σ2

t − σ2) + φσw
σ
t+1,

(5)

where wct+1, w
d
t+1, w

x
t+1, w

σ
t+1 ∼ i.i.d. N (0, 1). Consumption and dividend growth

contain a persistent long-run growth component xt+1 and the conditional volatilities

are driven by a time-varying uncertainty factor σ2
t+1.7

4.2 Conditional expectation

Using the dynamics in Equation (5) and the coefficients of the wealth-consumption

ratio in Equation (8) of Appendix B, the conditional expectation of Yt+1 equals

Eπt+1 [Yt+1] = Eπ
[
eθ1(q−Bxxt+(k1Bx+(1−ρ))xt+1−Bσσ2

t+k1Bσσ2
t+1+(1−ρ)σt+1wct+1

]
= eθ1(q−Bxxt+(k1Bx+(1−ρ))xπt+1−Bσσ2

t+k1Bσ(σπt+1)2 e
1
2

(1−γ)2(σπt+1)2 ,
(6)

with q = −δ + (1 − ρ)µc + k0 + (k1 − 1)(A − Bσσ
2). In this equation, the measure

πt+1, i.e. the economic model, is fully characterized by the realizations xπt+1 and

7The solution of the model is sketched in Appendix B. Note that in Bansal and Yaron (2004),
consumption growth depends on xt and σ2

t and therefore, at time t, the investor knows that
∆ct+1 ∼ N (µc+xt, σ

2
t ). Consequently, she cannot be ambiguous about the distribution. In contrast,

we assume that consumption growth depends on xt+1 and σ2
t+1.
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σπt+1. Hence, taking expectations conditional on the measure π means conditional on

the state variables. In general, imposing affine dynamics on the endowment process

in Equation (5) implies that the conditional expectation is an exponential affine

function of the underlying state variables.

In order to use the methodology outlined in Section 3.3, we need to identify a

set of predictor variables whose realizations map one-to-one and onto the set Π of

economic models. For the endowment process in Equation (5), the vector of state

variables and their first lags has this property

log(Yt+1) = α + β1xt+1 + β2xt + β3(σ2
t+1 − σ2) + β4(σ2

t − σ2) + (1− γ)σt+1εt+1.

In reality, we are not able to observe the underlying state vector. Thus, it is necessary

to identify which observable variables describe the dynamics of the economy. The

risk-free rate and the log price-dividend ratio are observable at the market, show a

clear business cycle pattern, and have a long tradition as predictors of stock and bond

returns.8 Furthermore, in standard affine asset pricing models these variables are

approximately affine in the state vector.9 Among others, Constantinides and Ghosh

(2011) and Bansal et al. (2012b) exploit this relation to estimate LRR models. In

the models they consider, these two variables span the state space. This also holds if

the representative investor is ambiguous about the distribution of consumption and

dividend growth. They invert the expressions for the log price-dividend ratio and the

risk-free rate to express the state variables in terms of observables. Because of their

economic relevance and motivated by the relation in affine asset pricing models, we

use these two quantities and their first lags as predictor variables.

8Cochrane (2005, Ch. 20) provides a detailed review of the literature.
9See Drechsler and Yaron (2011), Lustig et al. (2012), and the references therein.
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4.3 Finite sample evidence

Bansal and Yaron (2004) and Bansal et al. (2012a) calibrate their models assuming

a monthly decision interval. However, we use quarterly data over the post-war sub-

period to estimate the preference parameters in Section 5. In order to be consistent

with the empirical sampling frequency, we use a quarterly calibration and convert the

model parameters from a monthly into a quarterly frequency. Table 2 contains the

parameters used in our simulation study. The risk aversion coefficient γ is assumed

to be 10 for EZ preferences. For the SA model, we choose a lower value of the risk

aversion coefficient (γ = 5) and set the ambiguity parameter η to 20. The subjective

time discount rate is fixed at 0.0033. The models are estimated based on simulated

consumption and return data with the EIS restricted to 1.5. We simulate the models

1,000 times at a quarterly frequency with a sample size approximately equivalent

to the actual data (60 years). To investigate the finite sample behavior, we also

estimate the parameters based on longer samples. We start the simulations at the

unconditional means of the state variables and discard the first 10 years of each

simulated path. In addition to the return on the dividend claim, we generate 30

additional equity test assets to represent the cross-section of returns.10

The results of the estimations are summarized in Table 3. First, we discuss

the results assuming that the investor has EZ preferences. Panel 1 of Table 3 shows

that the median estimated parameter vector Θ̂EZ = (0.667, 0.003, 10.200) is very

close to the assumed preference parameters. The subjective time discount rate is

estimated very precisely, while the (median) standard error is larger for the risk

aversion coefficient. For the hypotheses tests, we report the median test statistics and

p-values (in parentheses). The model is not rejected by any of the three specification

10The log dividend growth of asset i follows from

∆dit+1 = µdi + λixt+1 + σt+1φdi,σ

(
ρicdw

c
t+1 +

√
1− (ρicd)

2wd
i

t+1

)
.
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tests and the Wald test rejects the null hypothesis of time-separability.

As commonly done in empirical tests of the EZ model, we substitute the re-

turn on the consumption claim by the return on the dividend claim. In the LRR

model, the return on the consumption claim has a mean of 0.73% and a standard

deviation of 1.52% per quarter. In contrast, the mean and volatility of the return on

the dividend claim are 1.15% and 8.94%. The standard deviation is about 6 times

larger. The correlation between the two return series is 0.53.11 Panel 2 shows that

using the return on the dividend claim as a proxy for the return on wealth biases

the parameter estimates dramatically. The median estimated parameter vector is

Θ̂EZ = (0.667, 0.000, 1.752). The subjective time discount rate is close to zero and

the estimated risk aversion coefficient is far too low, which is mainly due to the

high volatility of the return on the dividend claim. All specification tests reject the

model. This indicates that even in our model economy, substituting the return on a

stock market index for the return on wealth is inappropriate.

Panels 3 and 4 of Table 3 present the results for the SA model. While Panel 3

shows the estimated preference parameters and hypotheses tests with the analytic

formula for the conditional expectation in Equation (6), Panel 4 displays results

for the approximation technique outlined in Section 3.3. The estimated parameters

are close to the true values. Furthermore, the approximated conditional expectation

delivers almost identical results compared to the true conditional expectation. The

standard errors of the estimated parameters are quite large, indicating that it is

rather difficult to estimate the risk aversion and ambiguity parameters jointly in

small samples. The specification tests do not reject the model. Due to the lower

value of γ, as well as its large standard error, the Wald test does not reject time-

separability (ρ = γ). The large standard error of the risk aversion coefficient also

implies that ambiguity neutrality (γ = η) is difficult to reject. Even though the

11The numbers are obtained from a single simulation run of 100,000 years.
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model is true, the median p-value of the Wald test is above 10%.

In addition, we investigate the bias if the parameters are estimated on the

basis of EZ preferences but the data was generated by the SA model. Our main

conclusion from Panel 5 is that risk aversion is estimated with an upward bias if

ambiguity aversion is present. The p-values of the specification test based on the

HJD and the J-test are slightly below 5%. The RMSE is close to the one in Panel 3.

Even if ambiguity aversion is present, it is rather difficult to discriminate between

the models solely based on their pricing errors in small samples. Considering the

plausibility of the estimated preference parameters is also important.

Table 4 reports results for larger sample sizes N (100, 200, 500, and 1000

years). As expected, the estimated parameters are close to the true values and their

standard errors decrease in N . Concerning the hypotheses tests for the SA model,

the Wald test for ambiguity neutrality is rejected for a sample size of 100 years and

above, while the Wald test rejects time-separability for 500 and 1000 years. Both the

EZ and SA models are not rejected by the specification tests. Concerning the finite

sample properties of these tests, we are able to draw several conclusions. Table 5

shows the rejection rates of the specification tests, i.e. the proportion of estimations

where the empirical p-value is smaller than the asymptotic size. It is well-known

that the J-test has poor finite sample properties. We observe that in our simulation

study the rejection rates are far too large for samples smaller than 500 years. This

confirms that the test rejects too often for sample sizes typically used in empirical

tests of consumption-based asset pricing models. Similar to Ahn and Gadarowski

(2004), we find that the specification test based on the second moment matrix also

performs poorly in small samples. In contrast to this, the test based on the RMSE

behaves superior in finite samples. The rejection rates for a sample size of 60 years

differ only slightly from those with 1000 years and are close to the asymptotic values.
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5 Empirical Evidence

In this section, we estimate the preference parameters based on consumption and

stock market data. Furthermore, we analyze the evolution of the estimated pricing

kernels and investigate the in-sample and out-of-sample pricing performances of the

alternative preference models. The sample period is from the first quarter of 1952

to the third quarter of 2011. The set of test assets includes the 3-month Treasury

bill, the CRSP value weighted stock market index, 10 portfolios formed on size,

10 book-to-market value sorted portfolios, and 10 industry portfolios. Rcay is used

as proxy for the return on wealth. The data is described in Appendix C. Table 1

contains descriptive statistics of the variables used in the estimation.

5.1 Parameter estimates

The estimated parameters and their standard errors are reported in Table 6. First,

we discuss the results if the preference parameters are estimated under the restriction

γ = η, i.e. investors are assumed to be ambiguity neutral. All results are reported

for three values of the EIS, 1.5, 2, and 2.5, which are in line with the ones typically

used in asset pricing studies with recursive preferences. Nevertheless, it is informative

which value of the EIS minimizes the objective function. Our point estimate of the

EIS is 1.78, which is in line with these values. However, the objective function is

very flat in ρ and the confidence interval contains negative values of the EIS. The

problem of getting precise estimates of the EIS has also been reported by Bansal

et al. (2007) and Constantinides and Ghosh (2011), among others.12

Restricting the values of ρ to 2.5−1, 2−1, and 1.5−1, the estimated parameters

Θ̂EZ are (0.400, 0.010, 36.292), (0.500, 0.011, 31.075), and (0.667, 0.011, 21.843). The

subjective time discount rate is approximately 4% per annum and estimated with

12Also see the discussion in Section 3.1.
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great precision. The point estimates of relative risk aversion are clearly above the

values considered plausible by Mehra and Prescott (1985). Malloy et al. (2009) argue

that the EIS has little impact on the risk aversion estimate if the estimation is solely

based on the cross-sectional variation in returns. In contrast to their study, we force

the models to also match the equity premium. We observe that higher values of the

EIS lead to larger estimates of the risk aversion parameter. For the intuition of this

result, consider the standard LRR model of Bansal and Yaron (2004). In this model,

the market prices of the long-run risk factors are proportional to (θ1 − 1). When

estimating the preference parameters, returns are given exogenously. Consequently,

the representative investor’s preferences just influence the pricing kernel and thus

the market prices of risk. To fit the equity premium, a lower value of ρ requires a

higher value of γ, as long as ρ < 1.

The Wald test rejects the null hypothesis of time-separability, which indicates

that breaking the link between the EIS and risk aversion imposed by CRRA prefer-

ences is beneficial. EZ preferences price the cross-section of expected returns rather

well and a RMSE of zero cannot be rejected. The other two specification tests, the

J-test and the test based on the HJD, reject the model. However, we have seen in

Section 4.3 that the finite sample properties of these two tests are poor.

For the SA model, the parameter vectors Θ̂SA are (0.400, 0.012, 4.283, 40.545),

(0.500, 0.012, 2.295, 35.091), and (0.667, 0.011, 0.819, 24.817). While the subjective

time discount rate is similar to the one of the EZ model, we obtain lower values of risk

aversion. The point estimates of the ambiguity parameter η are considerably larger

than the risk aversion estimates. The ambiguity parameter increases in the value

of the EIS. In the LRR model with ambiguity about the state variables, Equation

(9) of Appendix B reveals that the market prices of the long-run risk factors are

proportional to (θ1θ2− 1). To match the equity premium in the data, an increase in

ρ is compensated by a lower value of η, as long as ρ < 1.

23



We find the relation γ̂SA < γ̂EZ < η̂ throughout all investigated cases. As

predicted by our simulation study, risk aversion is estimated with an upward bias if

ambiguity aversion is present and γ = η is imposed in the estimation. The result that

the ambiguity parameter is estimated above the risk aversion coefficient indicates

the presence of ambiguity aversion in the cross-section of expected returns. The null

hypothesis of ambiguity neutrality is not rejected by the Wald test. However, this

has to be put into perspective to the finite sample evidence in Section 4.3, where

the Wald test did not reject ambiguity neutrality even in the presence of ambiguity

aversion. Compared with EZ preference, the performance measures R2, RMSE, and

HJD of the SA model are slightly lower. Based on the magnitude of relative risk

aversion, the SA model delivers more plausible results.

As in our simulation study, the large standard errors of the risk aversion and

ambiguity parameters show that these parameters are hard to estimate precisely. An

economic interpretation why it is difficult to identify the two parameters separately

is that once the agent knows the economic model, the remaining uncertainty of the

distribution of returns might be of minor relevance. If returns are well described by

the economic model, ambiguity accounts for a major part of the overall uncertainty

and the impact of risk aversion on asset prices is relatively small.

5.2 Estimated pricing kernel

Figure 1 shows the realized pricing kernels of the EZ and SA models. The shaded

areas represent NBER recessions. The estimated pricing kernels are always positive

and thus satisfy the no arbitrage condition. Economic theory suggests that an in-

vestor evaluates payoffs more highly when economic conditions are bad, i.e. during

recessions. Figure 1 shows that the realized pricing kernels have a clear business cycle

pattern. As consumption growth and the return on wealth are low during recessions,

the realized pricing kernels are highest during these periods.
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The two realized pricing kernels show a similar behavior over time. The corre-

lation between the two time-series is 0.81. In the estimation, we force the mean of

the realized pricing kernel to match the inverse of the average real quarterly gross

return on the risk-free asset, which is 1.0029 in our sample. Thus, the average pricing

kernels are both close to one. Figure 1 shows that the peaks in the pricing kernel are

more pronounced for the EZ model. An ambiguity averse investor pays relatively

little attention to single extreme outcomes in consumption growth and the return

on wealth. She rather cares about the expected utility conditional on the economic

model at hand, respectively its certainty equivalent, which leads to less extreme

values of the pricing kernel.

To provide deeper insights into how ambiguity distorts the pricing kernel, we

decompose Equation (3) into three parts ξt,t+1 = ξCRRAt,t+1 × ξEZt,t+1 × ξSAt,t+1, with

ξCRRAt,t+1 = e−δ
(
Ct+1

Ct

)−ρ
,

ξEZt,t+1 =

(
e−δ
(
Ct+1

Ct

)−ρ
Rw
t,t+1

)θ1−1

, (7)

ξSAt,t+1 =

Eπt+1

(e−δ (Ct+1

Ct

)−ρ
Rw
t,t+1

)θ1
θ2−1

.

If investors know the economic model, the conditional expectation is a constant and

does not contain any additional information. If ambiguity is present and investors

care about it, the question is whether the conditional expectation matters for the

pricing of assets. In order to improve the fit to the cross-section of expected returns,

ξSA has to carry additional information compared with ξCRRA and ξEZ . The sample

correlation between ξCRRA and ξSA is about 0.25. If ξEZ and ξSA have a correlation

close to one, the introduction of ambiguity is basically relabeling risk as ambiguity.

For the realized pricing kernel of the SA model, the sample correlation between ξEZ

and ξSA is 0.53. This shows that ambiguity matters for asset prices.
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5.3 Pricing performance

Figure 2 displays realized versus predicted returns of the 3-month Treasury bill,

the CRSP market return, and 30 portfolios formed on size, book-to-market, and

industry. Predicted returns are calculated using the covariance decomposition (see

Appendix A). Table 7 reports cross-sectional relative pricing errors (in percent),

which are the square-roots of the mean squared differences between realized and

predicted returns divided by the square-roots of the mean squared returns.

How can ambiguity help explaining the equity premium and the cross-sectional

variation in expected returns? The EZ model only accounts for the covariation of

returns with consumption growth and the return on wealth. The pricing kernel of

the SA model contains the additional term ξSA. Hence, it also accounts for the

covariance between returns and the continuation value of the time t + 1 economic

model. Consider a portfolio which has low returns whenever the economic model is

unfavorable, i.e. when it yields a low continuation value. Ambiguity averse investors

command a premium for bearing this uncertainty (ambiguity premium). Compared

to the EZ model, the expected return on such an asset is higher. Thus, the SA model

may help explaining the returns of portfolios which are highly exposed to ξSA. If

consumption growth and the return on wealth already characterize the economic

model rather well, i.e. ξCRRA × ξEZ and ξSA are highly correlated, the ambiguity

premium can be replicated by amplifying the risk factors of the EZ model. This can

be achieved by using a high value of relative risk aversion. In Section 5.2, we have

seen that the correlation is 0.53. Thus, we expect the risk factors of the EZ model

to replicate the ones of the SA model to some extent, but not entirely.

Figure 2 shows that both models perform similarly in matching the equity

premium. In the data, it is 1.61% per quarter, while it amounts to 2.05% in the EZ

model and 2.01% in the SA model. To quantify the contribution of ambiguity, we
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decompose the equity premium into a risk premium and an ambiguity premium.13

We find that the risk premium accounts for 31.19% of the equity premium, while the

ambiguity premium makes up the remaining 68.81%. For lower values of the EIS,

the relative contribution of the ambiguity premium is smaller, but still above 50%.

Table 7 and Figure 2 show that both models have a remarkable fit to the 10

size sorted portfolios, with the SA model slightly outperforming. Both have difficul-

ties in accurately pricing book-to-market portfolios. Concerning the industry sorted

portfolios, although the average pricing performance is similar across models, there

are some noteworthy differences for the individual industries. Consider for instance

the industry portfolios 1 (non-durables) and 4 (energy). The pricing error of port-

folio 1 reduces from 0.76% in the EZ model to 0.52% in the SA model, while for

portfolio 4 it increases from 0.20% to 0.46%. Consistent with the arguments above,

the correlation between the return on portfolio 1 and ξSA is relatively large in abso-

lute terms, while it is low for portfolio 4. In line with this, the ambiguity premium

contributes more to the total premium for portfolio 1 compared with portfolio 4.

We also investigate the fit with respect to 10 long-term reversal portfolios,

portfolios formed on dividend yield, and portfolios based on two corporate prof-

itability measures, the earnings to price ratio and the cash-flow to price ratio. As

these portfolios were not used in the estimation, pricing these assets constitutes a

test of the out-of-sample performance of the preference models. Table 7 shows that

the SA model prices the portfolios more accurately than the EZ model, in particu-

lar the long-term reversal and the dividend yield sorted portfolios. Overall, we find

that accounting for ambiguity aversion is useful in explaining the cross-section of

expected returns. Even thought the pricing performance of the SA model is only

13Exploiting the approximation log(x) ≈ x− 1 yields

−Cov(ξCRRAξEZξSA,R)

E[ξ]
≈ −Cov(ξCRRAξEZ ,R)

E[ξ]
− Cov(ξSA,R)

E[ξ]
.

The first summand is labeled risk premium and the second ambiguity premium.
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slightly better for some of the test portfolios, it is able to explain the cross-sectional

variation in expected returns with a more reasonable level of risk aversion.

6 Conclusion

Several recent studies show that ambiguity may have a significant impact on asset

prices. However, there is little research investigating whether ambiguity aversion is

actually present in the prices of traded assets and how consumption-based asset

pricing models that account for ambiguity perform in explaining the cross-section

of expected returns. To the best of our knowledge, this is the first study which

estimates the SA model based on financial market data. Our point estimates of the

ambiguity parameter are between 25 and 40, while relative risk aversion is clearly

lower and within the range considered plausible by Mehra and Prescott (1985). This

indicates that market participants are ambiguity averse.

We analyze whether the SA model is able to explain the cross-section of ex-

pected returns and if it improves upon EZ preferences. We find that ambiguity helps

explaining the cross-sectional variation in expected returns. However, solely based

on pricing errors and commonly employed model specification tests, it is difficult to

discriminate between the two decision models. Our simulation study shows that even

in an economy where ambiguity has a perceptible impact on asset prices, the pric-

ing performances are similar. In the SA model, there is an additional priced factor

which compensates for bearing model uncertainty. Thus, the total equity premium

constitutes a risk premium and an ambiguity premium. If ambiguity is neglected,

matching the equity premium and the cross-section of expected returns requires a

high level of relative risk aversion to make up for the missing ambiguity premium.

The SA model can account for the patterns in expected stock returns with lower

relative risk aversion and thus provides a more reasonable explanation of asset prices.
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A GMM Estimation and Model Evaluation

Let Rt,t+1 = (R1
t,t+1, . . . , R

n
t,t+1)′ denote the vector of gross returns. The population moment

conditions are

E
[
f
(

Θ,Rt,t+1

)]
= 0.

For gross returns, we have f
(

Θ,Rt,t+1

)
= ξt,t+1(Θ)Rt,t+1−1 and for excess returns f

(
Θ,Rt,t+1

)
=

ξt,t+1(Θ)
(
Rt,t+1 −Rft,t+11

)
, where we make the dependence of the pricing kernel on the parameter

vector Θ explicit. The sample equivalent of the population orthogonality conditions is

gT
(

Θ,R
)

=
1

T

T−1∑
t=0

f
(

Θ,Rt,t+1

)
.

The GMM estimator of Θ, denoted by Θ̂, minimizes the criterion function

Θ̂ = argminΘ gT
(

Θ,R
)′

WT gT
(

Θ,R
)
,

where WT is a positive semi-definite weighting matrix which converges in probability to a positive
definite matrix of constants W.

Let S denote the variance covariance matrix of the moment conditions. Hansen (1982) shows
that the weighting matrix that minimizes the asymptotic variance of the parameter estimates is
W = S−1. Even if S is not used as weighting matrix, we still need to estimate S to construct
standard errors and to test hypotheses. We estimate the long-run covariance matrix S according
to Newey and West (1987b). As in Yogo (2006), the lag length is set to one to account for time
aggregation in consumption data.

Hansen (1982) shows that the variance of the parameter estimates and the estimated moment
conditions are

Var(Θ̂) =
1

T
(D′WD)−1 D′WSWD (D′WD)−1,

Var
(
gT
(

Θ̂,R
))

=
1

T
(In −WD(D′WD)−1D′)′ S (In −WD(D′WD)−1D′),

where D = E
[
∂f
(

Θ,Rt,t+1

)
/∂Θ′

]
and In is an n-dimensional identity matrix.

To perform inference on the parameters, we use Wald tests. Let C denote a k × k matrix and c a
k× 1 vector, where k denotes the number of estimated parameters. Newey and West (1987a) show
that the restrictions

CΘ− c = 0

can be tested using the following test statistic

(CΘ̂− c)′
(
C Var(Θ̂) C′

)−1

(CΘ̂− c),

which has a χ2 distribution with degrees of freedom equal to the rank of C. We use this test to
check for time-separability (γ = ρ) and ambiguity neutrality (γ = η).
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We perform Hansen’s J-test for overidentifying restrictions

gT
(

Θ̂,R
)′

Var
(
gT
(

Θ̂,R
))−1

gT
(

Θ̂,R
)
,

which has a χ2 distribution with n (number of moments) minus k (number of estimated parameters)
degrees of freedom under the null of correct model specification. Since the variance covariance
matrix of the moment conditions is singular, we use the Moore-Penrose pseudoinverse.

We compare root mean squared errors (RMSE) and Hansen and Jagannathan (1997) distances
(HJD) of different preference specifications and parameter vectors. The RMSE is the square-root
of the objective function that is minimized if the identity matrix is used for weighting

RMSE( Θ,R ) =

√
gT
(

Θ,R
)′

In gT
(

Θ,R
)
.

The Hansen and Jagannathan (1997) distance is given by

HJD( Θ,R ) =

√
gT
(

Θ,R
)′
G(R)−1 g

(
Θ,R

)
,

i.e. the square-root of the objective function if the second moment matrix G(R), with G(R)i,j :=
1
T

∑T−1
t=0 Rit,t+1R

j
t,t+1, is used for weighting.

We use the methodology of Jagannathan and Wang (1996) and Parker and Julliard (2005) to test
if the RMSE or the HJD is zero. Let

A = S1/2 (W −W D (D′WD)−1 D′W) (S1/2)′,

where S1/2 is the upper-triangular matrix from the Cholesky decomposition of S. The matrix A
has n − k positive eigenvalues, denoted by λ1, ..., λn−k. The asymptotic sampling distribution of
the distance is

T gT
(

Θ̂,R
)′

WT gT
(

Θ̂,R
) d→ u =

n−k∑
j=1

λjvj as T →∞,

where v1, ..., vn−k are independent χ2 random variables with one degree of freedom. The empirical
p-value of the statistic can be computed by drawing T (n− k) independent random numbers from
a χ2(1) distribution and counting the number of cases where u exceeds the test statistic. If the
efficient weighting matrix is used, i.e. W = S−1, all eigenvalues are unity and this test coincides
with the J-test.

The cross-sectional R2 is computed as

R2 = 1− Var (E [Rt,t+1]− Ep [Rt,t+1])

Var (E [Rt,t+1])
,

where the predicted returns are calculated using the covariance decomposition

Ep [Rt,t+1] =
1− Cov [ξt,t+1,Rt,t+1]

E [ξt,t+1]
.
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B Model Solution

We solve the model in the same manner as Bansal and Yaron (2004), Bansal et al. (2012a,b),
and Beeler and Campbell (2012) using analytical approximations. We assume that the log wealth-
consumption ratio z is affine in the state variables

zt = A+Bxxt +Bσ(σ2
t − σ2).

For the log return on the consumption claim rwt,t+1 = logRwt,t+1, we use the log-linear return
approximation of Campbell and Shiller (1988)

rwt,t+1 = k0 + k1zt+1 − zt + ∆ct+1,

where k0 and k1 are linearizing constants. It holds that k0 = log(1 + ez̄) − k1z̄, where k1 =
ez̄

1+ez̄ and z̄ is the long-run mean of the log wealth-consumption ratio. Using the Euler equation

Et
[
elog ξt,t+1+rwt,t+1

]
= 1 yields the following coefficients of the wealth-consumption ratio

A =
1

1− k1

(
−δ + k0 + (1− ρ)µc + (1− k1ϕσ)

Bσ
ϕσ

σ2 +
1− η

2(1− ρ)

(
Bσ
ϕσ

φσ

)2
)
,

Bx =
1− ρ

1− k1ϕx
ϕx, (8)

Bσ =
(1− γ)(1− ρ)

2(1− k1ϕσ)

(
1 +

1− η
1− γ

(
φx

1− k1ϕx

)2
)
ϕσ.

By substituting the return on the consumption claim into Equation (3), we obtain an expression
of the log pricing kernel in terms of the state variables

log ξt,t+1 = s0 + sxxt + sσ(σ2
t − σ2)− Λcσt+1w

c
t+1 − Λxφxσt+1w

x
t+1 − Λσφσw

σ
t+1,

with the drift characterized by the coefficients

s0 = −δ − ρµc −
(1− η)(ρ− η)

2(1− ρ)2

(
Bσ
ϕσ

φσ

)2

+
sσ
ϕσ

σ2,

sx = −ρϕx,

sσ =
1

2
(1− γ)(γ − ρ)ϕσ +

1

2
(1− η)(η − ρ)

(
φx

1− k1ϕx

)2

ϕσ.

The market prices of uncertainty in consumption, expected consumption growth, and volatility are
determined by

Λc = γ,

Λx =
η − ρ
1− ρ

k1Bx + η, (9)

Λσ =
η − ρ
1− ρ

k1Bσ +
1

2
(η − γ)(1− γ).
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Given the log pricing kernel, the continuously compounded risk-free rate is

rft,t+1 = − logEt
(
elog ξt,t+1

)
= rf0 + rfxxt + rfσ(σ2

t − σ2),

with

rf0 = −s0 −
1

2

(
Λσ −

1

2

(
Λ2
c + Λ2

xφ
2
x

))2

φ2
σ −

1

2

(
Λ2
c + Λ2

xφ
2
x

)
σ2,

rfx = −sx,

rfσ = −sσ −
1

2

(
Λ2
c + Λ2

xφ
2
x

)
ϕσ.

To solve for the price-dividend ratio zd, we rely on the log-linear approximation of the log return
on the dividend claim rdt,t+1 = logRdt,t+1

rdt,t+1 = kd0 + kd1z
d
t+1 − zdt + ∆dt+1,

where kd0 = log(1 + ez̄
d

) − kd1 z̄d, kd1 = ez̄
d

1+ez̄d
, and z̄d denotes the long-run mean of the log price-

dividend ratio. We conjecture that the log price-dividend ratio zd is affine in the state variables

zdt = Ad +Bdxxt +Bdσ(σ2
t − σ2).

The coefficients of the log price-dividend ratio follow by applying the Euler equation to the log
return on the dividend claim

Ad =
s0 + kd0 + µd + 1

2

(
Bdσ
ϕσ
− sσ

ϕσ
− Λσ

)2

φ2
σ +

(
(1− kd1ϕσ)

Bdσ
ϕσ
− sσ

ϕσ

)
σ2

(1− kd1)
,

Bdx =
λ− ρ

1− kd1ϕx
ϕx,

Bdσ =
sσ + 1

2

((
kd1B

d
x + λ− Λx

)2
φ2
x + γ2 + φ2

d,σ − 2γρcdφd,σ

)
ϕσ

1− kd1ϕσ
.

The conditional expected return on the dividend claim is given by

Et
[
rdt,t+1

]
= kd0 + (kd1 − 1)Ad + µd

+((kd1ϕx − 1)Bdx + λϕx)xt + (kd1ϕσ − 1)Bdσ(σ2
t − σ2).

The equity premium follows by subtracting the risk-free rate from the expected return on the
dividend claim

Et
[
rdt,t+1

]
− rft,t+1 =

1

2

((
Λσ −

1

2
(Λ2

c + Λ2
xφ

2
x)

)2

−
(

Λσ −
Bdσ − sσ
ϕσ

)2
)
φ2
σ

+

(
Λx
(
kd1B

d
x + λ

)
φ2
x −

1

2

(
kd1B

d
x + λ

)2
φ2
x + Λcφd,σρcd −

1

2
φ2
d,σ

)
σ2

+

(
Λx
(
kd1B

d
x + λ

)
φ2
x −

1

2

(
kd1B

d
x + λ

)2
φ2
x + Λcφd,σρcd −

1

2
φ2
d,σ

)
ϕσ(σ2

t − σ2).
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C Data

Risk-free rate: We use the 3-month secondary market Treasury bill rate from the H.15 release
of the Federal Reserve Board of Governors (http://www.federalreserve.gov/releases/
h15/data.htm) as risk-free rate.

Stock returns: All stock returns are taken from Kenneth French’s homepage (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html), including the CRSP
value weighted stock return index, which we use as proxy for the return on the stock mar-
ket. As test assets, we employ the return on the 3-month Treasury bill, the CRSP value
weighted stock return, and the returns on 30 additional equity portfolios. Among these, 10
value weighted portfolios are formed on size (market equity) at the end of each June using
NYSE breakpoints, 10 value weighted portfolios formed on BE/ME (book equity at the last
fiscal year end of the prior calendar year divided by market equity at the end of December
of the prior year) at the end of each June using NYSE breakpoints, and 10 industry port-
folios (the sectors are Consumer Nondurables, Consumer Durables, Manufactoring, Energy,
Business Equipment, Telecommunication and Television, Retail, Healthcare, Utilities, and
Other) also formed at the end of each June. In Section 5.3, we also use the returns on 10
portfolios formed on long-term reversal, 10 dividend yield sorted portfolios, 10 portfolios
formed on earnings to price ratios, and 10 cash-flow to price sorted portfolios. For a detailed
description of the return data, see the URL above.

Inflation: All returns are deflated using the seasonally adjusted Consumer Price Index (CPI). We
obtain the CPI from the Bureau of Labor Statistics (http://www.bls.gov/cpi). Quarterly
inflation is the growth rate of the CPI in the final month of the current quarter over the
final month of the previous quarter.

Consumption and return on wealth: We use the same definitions of consumption, labor
income, asset holdings, and cay as in Lettau and Ludvigson (2001a). The updated data
is available on Martin Lettau’s homepage (http://faculty.haas.berkeley.edu/lettau/
data_cay.html). Lettau and Ludvigson (2001a) define aggregate consumption as expen-
ditures on nondurables and services, excluding shoes and clothing. The quarterly data is
seasonally adjusted at annual rates, in billions of chain-weighted dollars. Labor income is
defined as wages and salaries plus transfer payments plus other labor income minus per-
sonal contributions for social insurance minus taxes. Asset holdings is household net worth
in billions of current dollars. We refer to Lettau and Ludvigson (2001a) for a more detailed
description of the data.

Price-dividend ratio: The price-dividend ratio (based on the S&P Composite index) is taken
from Robert Shiller’s homepage (http://www.econ.yale.edu/~shiller/data.htm).
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Mean Min Max Std. Dev. Skew Kurt AC1

Log Consumption Growth 0.46 -1.25 2.10 0.47 -0.37 4.25 0.45
Risk-Free Rate 0.28 -1.75 3.55 0.67 0.44 5.52 0.47
Log Price-Dividend Ratio 3.50 2.78 4.50 0.40 0.51 2.59 0.97
Market Return (CRSP ) 1.52 -31.38 20.17 8.57 -0.83 4.29 0.10
Market Return (cay) 1.48 -2.01 4.86 0.81 -0.09 5.44 0.14
Size 1 1.96 -40.79 34.43 12.78 -0.34 3.71 0.06
Size 2 1.87 -39.65 35.28 12.10 -0.50 3.89 0.01
Size 3 2.04 -37.79 32.33 11.54 -0.60 4.02 -0.01
Size 4 1.94 -40.97 29.91 11.18 -0.68 4.24 -0.01
Size 5 2.02 -32.97 29.63 10.76 -0.66 3.95 0.02
Size 6 1.94 -34.17 26.75 10.05 -0.70 3.95 0.03
Size 7 1.93 -31.09 28.49 10.00 -0.67 3.99 0.06
Size 8 1.83 -26.89 24.47 9.61 -0.72 3.81 0.04
Size 9 1.74 -28.64 19.60 8.83 -0.89 4.15 0.08
Size 10 1.39 -34.41 20.33 8.05 -0.88 4.74 0.13
BM 1 1.27 -44.18 23.00 10.05 -0.91 5.04 0.10
BM 2 1.42 -31.10 23.05 8.93 -0.77 4.52 0.02
BM 3 1.64 -29.20 20.36 8.69 -0.65 3.79 0.05
BM 4 1.57 -28.40 22.00 8.78 -0.79 4.24 0.10
BM 5 1.82 -28.57 18.89 8.07 -0.79 3.93 0.09
BM 6 1.81 -29.49 20.61 8.33 -0.74 4.10 0.13
BM 7 1.80 -23.30 24.66 8.41 -0.50 3.44 0.15
BM 8 2.20 -42.00 30.44 8.99 -0.78 5.68 0.12
BM 9 2.25 -25.26 27.46 9.21 -0.55 3.85 0.06
BM 10 2.35 -37.26 39.23 11.02 -0.33 4.50 0.13
Industry 1 (NoDur) 2.03 -37.67 26.30 8.51 -0.89 5.44 0.04
Industry 2 (Durbl) 1.26 -47.01 35.42 11.88 -0.64 4.60 0.12
Industry 3 (Manuf) 1.60 -34.94 24.58 9.40 -0.83 4.43 0.09
Industry 4 (Enrgy) 1.87 -31.51 23.38 8.92 -0.70 3.90 0.10
Industry 5 (HiTec) 1.67 -43.07 32.98 12.27 -0.83 5.01 0.08
Industry 6 (Telcm) 1.41 -26.44 23.04 8.39 -0.47 3.57 0.16
Industry 7 (Shops) 1.73 -43.66 36.09 10.03 -0.73 5.79 0.03
Industry 8 (Hlth) 2.02 -43.76 21.95 9.54 -1.01 5.82 0.04
Industry 9 (Utils) 1.55 -26.88 23.20 7.30 -0.69 4.34 0.10
Industry 10 (Other) 1.39 -31.66 21.63 10.34 -0.84 3.93 0.09

Table 1: Summary Statistics

The table shows descriptive statistics of log consumptions growth, the risk-free rate,
the log price-dividend ratio, two proxies for the market return, and the 30 equity test
assets. The log consumption growth rate and the continuously compounded returns
are expressed in percentage terms. The sample period is from the first quarter of
1952 to the third quarter of 2011. The data is described in Appendix C.
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Preferences

ρ δ γ η

0.6667 0.0033 5− 10 5− 20

Consumption and Dividends

µc µd λ φd,σ ρcd

0.0045 0.0045 2.5 6.5024 0.40

Long-Run Growth Rate

ϕx φx

0.9269 0.1140

Volatility

ϕσ φσ σ

0.9970 4.84 · 10−6 0.0125

Table 2: Parameters of the LRR Model

The table shows preference and model parameters in quarterly terms. The monthly
values are taken from Bansal et al. (2012a).
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N δ γ η R2 RMSE HJD γ = ρ η = γ J-test

Panel 1: EZ with Rw (ρ = 0.6667)

60 0.003 10.080 0.498 0.030 0.379 10.110 36.929
(0.000) (2.947) (–) (0.459) (0.220) (0.001) (0.179)

Panel 2: EZ with Rd (ρ = 0.6667)

60 0.000 1.704 0.165 0.054 0.538 4.676 45.869
(0.010) (0.484) (–) (0.002) (0.000) (0.031) (0.032)

Panel 3: SA with Rw and true conditional expectation (ρ = 0.6667)

60 0.003 6.107 19.294 0.603 0.031 0.406 0.700 2.647 39.751
(0.000) (6.528) (3.809) (–) (0.411) (0.183) (0.403) (0.104) (0.088)

Panel 4: SA with Rw and approximated conditional expectation (ρ = 0.6667)

60 0.003 6.016 19.245 0.603 0.031 0.406 0.627 2.626 39.770
(0.000) (6.622) (3.800) (–) (0.407) (0.185) (0.428) (0.105) (0.088)

Panel 5: EZ with Rw, data based on SA model (ρ = 0.6667)

60 0.004 14.293 0.435 0.037 0.441 20.091 46.546
(0.000) (3.037) (–) (0.126) (0.048) (0.000) (0.028)

Table 3: Parameter Estimates (Simulated Data)

The table shows GMM estimates of the preference parameters. EZ refers to Epstein
and Zin (1989) preferences, SA to the smooth ambiguity model. HAC standard
errors are in parentheses. The RMSE is the square-root of the mean squared Euler
equation error. HJD denotes the Hansen and Jagannathan (1997) distance. The table
also reports the cross-sectional R2, the Wald tests for time-separability (γ = ρ) and
ambiguity neutrality (η = γ), and the J-test for overidentifying restrictions (p-values
in parentheses). Details on the tests are provided in Appendix A. All estimates
are based on 1,000 simulation runs of approximately equivalent length to the data
(N = 60 years). The true parameters are ΘEZ = (ρ = 0.6667, δ = 0.0033, γ = 10),
for Epstein and Zin (1989) preferences, and ΘSA = (ρ = 0.6667, δ = 0.0033, γ =
5, η = 20), for the smooth ambiguity model.
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N δ γ η R2 RMSE HJD γ = ρ η = γ J-test

Panel 1: EZ with Rw (ρ = 0.6667)

100 0.003 10.121 0.630 0.024 0.282 17.089 32.825
(0.000) (2.281) (–) (0.486) (0.319) (0.000) (0.330)

200 0.003 9.930 0.768 0.017 0.195 33.865 31.356
(0.000) (1.597) (–) (0.479) (0.376) (0.000) (0.398)

500 0.003 10.075 0.892 0.011 0.123 87.600 30.638
(0.000) (1.007) (–) (0.453) (0.380) (0.000) (0.433)

1000 0.003 10.069 0.944 0.008 0.086 174.601 29.913
(0.000) (0.712) (–) (0.484) (0.400) (0.000) (0.470)

Panel 2: SA with Rw and true conditional expectation (ρ = 0.6667)

100 0.003 6.145 19.762 0.720 0.024 0.303 1.171 4.853 34.376
(0.000) (5.039) (2.986) (–) (0.454) (0.283) (0.279) (0.028) (0.226)

200 0.003 5.179 19.912 0.840 0.017 0.209 1.571 11.200 31.524
(0.000) (3.544) (2.109) (–) (0.492) (0.346) (0.210) (0.001) (0.341)

500 0.003 5.278 20.168 0.928 0.011 0.132 4.197 27.905 30.249
(0.000) (2.248) (1.342) (–) (0.473) (0.367) (0.041) (0.000) (0.402)

1000 0.003 5.139 20.192 0.963 0.008 0.093 7.911 56.956 29.135
(0.000) (1.594) (0.954) (–) (0.476) (0.397) (0.005) (0.000) (0.458)

Table 4: Parameter Estimates (Simulated Data and Larger Sample Size)

The table shows GMM estimates of the preference parameters. EZ refers to Epstein
and Zin (1989) preferences, SA to the smooth ambiguity model. HAC standard
errors are in parentheses. The RMSE is the square-root of the mean squared Euler
equation error. HJD denotes the Hansen and Jagannathan (1997) distance. The table
also reports the cross-sectional R2, the Wald tests for time-separability (γ = ρ) and
ambiguity neutrality (η = γ), and the J-test for overidentifying restrictions (p-values
in parentheses). Details on the tests are provided in Appendix A. The estimates
are based on 1,000 simulation runs with sample size equal to N years. The true
parameters are ΘEZ = (ρ = 0.6667, δ = 0.0033, γ = 10), for Epstein and Zin (1989)
preferences, and ΘSA = (ρ = 0.6667, δ = 0.0033, γ = 5, η = 20), for the smooth
ambiguity model.
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Test N EZ SA

1% 5% 10% 1% 5% 10%

RMSE 60 1.13 6.26 10.77 1.40 7.40 13.90
HJD 60 8.31 21.44 34.56 10.20 25.40 36.40
J-test 60 11.49 27.28 38.36 23.40 42.50 53.10

RMSE 100 1.20 4.50 10.70 0.70 6.90 12.20
HJD 100 4.20 14.00 22.40 4.80 17.20 26.20
J-test 100 6.00 16.70 25.50 10.10 24.70 33.10

RMSE 200 1.30 5.80 11.00 1.30 5.90 11.00
HJD 200 3.10 11.40 19.00 3.60 11.80 20.50
J-test 200 3.20 10.90 17.10 4.60 14.40 22.00

RMSE 500 1.20 6.10 12.10 2.30 8.20 13.80
HJD 500 2.50 8.20 16.20 3.40 10.20 17.50
J-test 500 1.90 7.00 12.20 3.10 9.60 14.80

RMSE 1000 1.10 6.10 11.10 0.90 5.80 10.90
HJD 1000 2.00 8.40 14.80 2.60 8.60 16.50
J-test 1000 0.80 6.30 11.10 1.70 6.50 12.40

Table 5: Finite Sample Behavior of Specification Tests

The table shows the proportion of the empirical p-values of the specification tests
being smaller than the asymptotic size. EZ refers to Epstein and Zin (1989) prefer-
ences, SA to the smooth ambiguity model. The RMSE is the square-root of the mean
squared Euler equation error. HJD denotes the Hansen and Jagannathan (1997) dis-
tance. The J-test refers to Hansen’s test for overidentifying restrictions. Details on
the tests are provided in Appendix A. All estimates are based on 1,000 simulation
runs. The results are reported for three significance levels (1%, 5%, and 10%) and
for different values of the sample size N in years.
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ρ δ γ η R2 RMSE HJD γ = ρ η = γ J-test

Panel 1: EZ (ρ unrestricted)

0.563 0.011 27.688 0.404 0.021 0.690 0.116 85.434
(1.406) (0.006) (78.368) (–) (0.143) (0.000) (0.734) (0.000)

Panel 2: EZ (ρ restricted)

0.400 0.011 36.292 0.402 0.021 0.691 8.052 90.750
(–) (0.001) (12.649) (–) (0.242) (0.000) (0.005) (0.000)

0.500 0.011 31.075 0.403 0.021 0.690 8.130 91.679
(–) (0.001) (10.723) (–) (0.239) (0.000) (0.004) (0.000)

0.667 0.010 21.843 0.402 0.021 0.690 8.211 92.921
(–) (0.001) (7.390) (–) (0.233) (0.000) (0.004) (0.000)

Panel 3: SA (ρ restricted)

0.400 0.012 4.283 40.545 0.475 0.020 0.616 0.016 1.037 87.505
(–) (0.000) (31.009) (13.703) (–) (0.088) (0.000) (0.900) (0.308) (0.000)

0.500 0.012 2.295 35.091 0.477 0.020 0.612 0.004 1.125 85.991
(–) (0.000) (26.836) (11.744) (–) (0.088) (0.000) (0.947) (0.289) (0.000)

0.667 0.011 0.819 24.817 0.474 0.020 0.608 0.000 1.184 84.046
(–) (0.000) (19.217) (8.146) (–) (0.084) (0.000) (0.994) (0.276) (0.000)

Table 6: Parameter Estimates

The table shows GMM estimates of the preference parameters. EZ refers to Epstein
and Zin (1989) preferences, SA to the smooth ambiguity model. HAC standard
errors are in parentheses. The RMSE is the square-root of the mean squared Euler
equation error. HJD denotes the Hansen and Jagannathan (1997) distance. The table
also reports the cross-sectional R2, the Wald tests for time-separability (γ = ρ) and
ambiguity neutrality (η = γ), and the J-test for overidentifying restrictions (p-values
in parentheses). Details on the tests are provided in Appendix A.
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In-Sample Out-of-Sample

ρ Size BM Industry All Reversal D/P E/P CF/P

Panel 1: EZ

0.400 7.53 19.38 20.57 16.36 21.24 32.28 28.85 25.46

0.500 7.51 19.54 20.36 16.34 20.86 32.12 28.91 25.72

0.667 7.50 19.85 20.06 16.36 20.23 31.86 29.04 26.18

Panel 2: SA

0.400 6.56 17.77 20.11 15.41 15.24 24.89 26.71 24.68

0.500 6.50 17.83 20.08 15.41 15.35 25.12 26.81 24.74

0.667 6.61 18.26 20.04 15.58 15.90 26.21 27.27 25.08

Table 7: Pricing Errors

The table reports relative cross-sectional pricing errors (in percent), which are com-
puted by taking the square-roots of the mean squared differences between realized
and predicted returns divided by the square-roots of the mean squared returns. EZ
refers to Epstein and Zin (1989) preferences, SA to the smooth ambiguity model. The
construction of the individual portfolios is described in Appendix C. “All” contains
10 size, 10 book-to-market, and 10 industry sorted portfolios.
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Figure 1: Realized Pricing Kernels

The figure shows time-series of realized pricing kernels and their five-quarter mov-
ing averages. It also displays the standardized components of the decomposition in
Equation (7). EZ refers to Epstein and Zin (1989) preferences, SA to the smooth
ambiguity model. The EIS is set to 2. The shaded areas represent NBER recessions.
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(b) SA

Figure 2: Realized versus Predicted Returns

The figure shows realized versus predicted returns on the 3-month Treasury bill (+),
the CRSP market return (♦), and portfolios formed on size (4), book-to-market
(5), and industry (2). EZ refers to Epstein and Zin (1989) preferences, SA to the
smooth ambiguity model. The EIS is set to 2.

47


